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Abstract—Based on the previous work by the authors in which generalized constitutive equations
and evolution laws for rate-independent plasticity were developed from the theory of internal state
variables in irreversible thermodynamics, the present paper establishes rate-dependent constitutive
relations which have more generality than those proposed by other authors. As a particular case,
generalized linear viscoelastic constitutive relations are derived under the assumption that the
process is isothermal, which are found to be identical with those obtained from the general linear
viscoelastic model analysis.

INTRODUCTION

Although the development of plasticity has lasted for more than a century, the interest
in the establishment of plastic constitutive relations for different kinds of material has never
decreased. In particular, the work of Duhem (1911) provided a theoretical foundation for
the evolution of a new subject called continuum thermodynamics in which the concept of
internal state variables is introduced to describe irreversible processes in continuum. The
pioneering work to develop stress—strain relations based on this theory of internal state
variables was done by Biot (1954) and Meixner (1954) for the case of infinitesimal defor-
mation. Later, Coleman and Gurtin (1967), Onat (1966), Rice (1971), Hill and Rice (1973),
and Valanis (1966) extended the approach to finite deformation.

Unlike the theory of the above authors, Deng ef al. (1992) selected not only internal
state variables but also inelastic strain as independent variables to characterize inelastic
deformation. The Drucker postulates were generalized to overcome the limitation of the
classical approach, which is unable to describe “real” hardening when kinematic hardening
occurs. As a result, the rate-independent constitutive equations and evolution laws are
derived.

In this paper, the constitutive equations and evolution laws for rate-dependent plas-
ticity are established by introducing a free energy function and thermodynamic dissipation
potential. Assuming that both the function and potential above are quadratic forms of
their independent variables, the generalized linear viscoelastic constitutive equations are
derived which are similar to but more general than those proposed by Biot, and are identical
to those obtained from the general viscoelastic model analysis.

1. RATE-DEPENDENT CONSTITUTIVE EQUATIONS AND EVOLUTION LAWS

In continuum thermodynamics, there are two basic laws which play important roles
in the development of many subjects related to thermodynamics. The two laws are the
energy conservation law and the entropy increment inequality, and can be mathematically
expressed as

pé =6yt +r—q; (M
and
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pj—i+(@)v>0 )

respectively, where p is volume density, e is specific internal energy, r is volume density of
the internal heat production, T is the absolute temperature, s is specific entropy, g; (i ranges
over x, y, z) is heat flux vector, and 6, and ¢; (i,j range over x, y, z) are the stress and strain
tensors for small deformation, respectively.

For convenience, we introduce the free energy function

Y =e—Ts. (3)

Substituting eqn (3) into eqns (1) and (2) yields

0k, —p(J+sT)—pTs+r—q,, =0 @
and
"i/ﬁif—P(l//HT)—q,? >0 )

where eqn (5) is called the Clausius—Duhem inequality.

Like the specific entropy s and the specific internal energy e, the free energy function
W is taken as a state function in continuum thermodynamics which can be expressed by a
set of basic state variables. The choice of the basic state variables is very important because
they reflect the average macroscopic effects of the movement of a large number of particles.
Nearly all other authors select ¥ to be a function of the total strain tensor g; or elastic
strain tensor &, the temperature 7 and a suitable set of internal state variables. They
indicate that the inelastic deformation in materials can be completely described by the
chosen internal state variables. Indeed, this is true when kinematic hardening of materials
does not occur or can be neglected. However, as shown by Deng et al. (1992), if the
kinematic hardening is sufficiently large, we should choose, besides a set of internal state
variables v, (k = 1,2, ..., n), theinelastic strain &} as an independent variable to characterize
inelastic deformation. Thus, it is more reasonable to write ¥ in the following form

Vo= (e, ef, 00 7). (6)

Most phenomenological experiments show that i can be expressed as the summation
of a thermo-elastic term i, (&}, T) and a thermo-inelastic term (&}, v, T), (Lemaitre and
Chaboche, 1990), i.e.

W=y (&, T+ (e, v, 7). (N

Equation (7) reflects the decoupling between reversible thermo-elastic and irreversible
thermo-inelastic behaviour.
By substituting eqn (7) into eqns (4) and (5), and noting that &; and T are controllable

variables, and that g, = &, +¢]}, we have

o,

®)

and
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Wy Oy,
S et AT 3 9
<6T Tar ©)
while eqns (4) and (5) reduce to
NN, W2
— g0 __ T2y —pTs5—q., =0 10
(au p as‘,;)s” e O +r—pTs—q; (10
and
s\ L s T,
- 2len o2y, —g.—=>0 11
(611 p ﬁgi.;?)gu p avk Uk i T ( )
respectively.

Equations (8) and (9) establish the thermo-elastic and entropy-temperature consti-
tutive relations, respectively. Equation (10) is the heat transfer equation, while eqn (11) is
called the dissipation inequality. It is obvious that the total number of derived equations,
i.e. eqns (8)—(10) is less than the number of unknown variables. To solve a thermodynamic
problem completely, complementary equations have to be sought.

Following the previous work of the present authors (1992), we define here that

-

in g —pa 2
ij — Yij R

Og!

J

o

> Wk=_pai% (k=1,2,....n) (12a)

or

¥ Wk+p%= (k=1,2,....n) (12b)

where o',
tively.

As many other authors have done, e.g. Lemaitre and Chaboche (1990), we also
introduce a dissipation potential ¢ (6}, W,,G;) which is a function of thermodynamic
forces. The evolution laws expressing the relations between flux variables and forces for
rate-dependent plasticity can be given in the form

W) and G, are called thermodynamic forces associated with &}, v, and 7 respec-
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i O
=
coy;
Lo, =22 e=12,...m). (13a)
oW,
_ 9
LQi _6G1—

Using the Legendre-Fenchel transform ¢* = (6782 + W0, + G.¢q;) — ¢, we obtain a
new potential ¢* (&7, 4, g;), which produces an equivalent form of eqn (13a) as

%
y szai (k=1,2,....n). (13b)

The evolution laws in eqn (13) provide complementary equations necessary for the
complete solution of a thermodynamic problem under specified initial and boundary con-
ditions. On the other hand, using eqn (12a), eqn (11) becomes

6"+ Wi +Gig, > 0 (14)

which shows that the total dissipation work done by the associated forces on their cor-
responding thermodynamic variables will never be negative.

It is apparent by substituting eqn (13a) or (13b) into eqn (14) that the inequality in
eqn (14) can be automatically satisfied if ¢ or ¢* is a non-negative, convex function which
contains the origin [¢(0,0,0) = 0, ¢*(0,0,0) = 0].

Also it is obvious that when inelastic strain ¢} does not explicitly appear in the free
energy function \, 6} = ¢,;. Thus all the results in this section reduce to the ones by other
authors. Because the constitutive equations given in eqns (8)—(10) and evolution laws in
eqn (13) contain a set of internal state variables, we need to eliminate them by using the
above simultaneous equations to obtain the stress-strain constitutive relations. In the
following section, we will discuss the derivation of stress—strain constitutive equations for
viscoelastic materials under the assumption that the process is isothermal and the defor-
mation is small.

2. GENERALIZED LINEAR VISCOELASTIC CONSTITUTIVE EQUATIONS

In engineering, there are a lot of materials such as plastics, rubber, resin, glass and
metal which, when loaded under high temperature, exhibit a particular behaviour between
elasticity and viscosity called viscoelasticity. A significant amount of work has been done
in the past on the viscoelastic properties in both model analysis and experimental study. A
systematic discussion on the subject can be found in references by Ward (1983), Ferry
(1980), Christensen (1982), and Fligge (1975).

Biot (1954) developed linear viscoelastic stress—strain constitutive relations based on
the theory of internal state variables in thermodynamics. In his paper, however, only the
total strain was taken as an independent state variable. In fact, as discussed in the previous
section, it is more reasonable to consider both elastic and inelastic strains as two independent
state variables.
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Assuming the loading process is slow enough to be regarded as isothermal, then 7
keeps constant, G; = 0, and ¢, = 0. This means that no heat dissipation takes place. From
eqns (12b) and (13b) we have

@(I;:* 6&}/,2 (k=1,2,...,n) (15)
o6, TP an, =
and eqn (14) becomes
olEn+ W0, > 0. (16)

It is well known from Hooke’s law that for linear elastic materials, the relation between
stress and strain is linear. That is, strain energy density is a quadratic form of strain.
Similarly, for many viscoelastic materials, all the potentials ¥, (e,), ¥, (&} v;) and
@*(&3,0,) are also quadratic forms of their corresponding independent variables from
phenomenological experiments.

For convenience, noting the symmetry of stress and strain tensors, and using Onsager’s

symmetry relations, we can write the potentials as follows

1 6
'//1 =$.ZIEU8?8;€' (17)
i =
1 “ in ,in
Y, = El; » Z 1 A8 (18)
Lj=
* 1 < ain gin 7
Q* = 3 B &g’ (19)

Thus eqns (8), (15) and (16) become

Y ESg =0 (i=12....m) (20)
i=
YA+ Y By =0, (i=12.....m) @
=1 =1
Y BrE" =0 22)
1§

respectively.
The matrix forms of eqns (20) and (21) are

[E*]{e°} = {o} (23)
and
[Al{e"} + [B]{&"} = {o} (24)

where
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{eh = (&5 & & & & & & ... &)
=(e, &, & 26 2 28, 0 ... 0)F (25)
{e") = (" &f &f &f & e & .. o)t
=(en & en 2dn 28 265 v, ... )" (26)
{6y =(0, 0, 65 0, 05 Gs 07 ... G)°
= (ax.\' Oy Ozz O O-xyo s O)T (27)

and [E*], [A], [B] are all symmetrical square matrices of order m xm (m = 6+n):

[E*JT=[E*]=[[£]] [[(;ﬂ (28)
(A, A, ... A,

AT = [A] = Ay Ay ... A, (29)
o e A
[ B,, B, B,

TIU N (30)
B B . B,

while [I] is an identity matrix of order n x n, and [E] is the elastic matrix of order 6 x 6

E, E, ... Eg
E E ... K

[E] = 21 22 % | 31)
Eq Eeo ... Eg

Note that the equality sign in eqn (22) holds only for purely elastic deformation. For
viscoelastic materials being discussed, ¢* is always positive, i.e. ¢* is a quadratic form of
positive definite, so its coefficient matrix [B] is real, symmetrical and positive.

Now let us establish constitutive relations between stress {6} and total strain {e} by
using eqns (23) and (24). As [E*] is a symmetrical and non-singular matrix, its inverse [S]
must exist. In the light of the rule for the inverse of a symmetrical matrix by partitioning,
Kraus (1987), we know that [S] is also a symmetrical square matrix of order m x m

(32)

[SI" = 8] = [E4] ' = [[E]A [0]].

{01 (]
Thus eqn (23) may be written as

{e°} = [S]{s}. (33)

Noting that {&} = {&} —{&°}, we can express eqn (24) as follows
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[Al({e] —{e"}) +[Bl({&} — {&}) = {a}. (34)
The substitution of eqn (33) into eqn (34) produces
[Al{e} +[B]{¢} = [Cl{s} +[D]{5} (35)
where
[C] = [A][S]+[I*], [D] = [B][S] (36)
with [I*] being an identity matrix of # x m.

Equation (35) is a matrix differential equation relating stress with total strain. It is
obvious that if we neglect the influence of {&°}, thus {¢"} = {e}, and eqn (35) reduces to

[Al{e} + [B]{&} = {o}. (37)

Comparing eqn (35) with eqn (37) we see that the left hand sides of the two equations
are identical but the right hand sides are different. Equation (35) includes not only the term
of stress but its derivative as well, which, although being a matrix equation, is similar to a
standard linear solid (or three parameter solid) model in form while eqn (37) includes only
the term of stress, which is similar to a Kelvin—Voigt model. In the following, we will show
that the solution of eqn (35) gives the constitutive relations of the general Kelvin—Voigt
solid which has been used for describing linear viscoelastic behaviour in polymers and
metals at high temperature.

2.1. Solution of homogeneous equations
Let us first consider the solution of homogeneous equations [eqn (35)]

[A}{e} + [B]{2} = {0}. (38)
The general form for the solution of the above matrix equation is
{e} = {p}e™" (39
where
=0 ¢ ... o))" (40)
Substituting eqn (39) into eqn (38) gives
([A]1—A[B]) {¢} = {0}. (41)
The characteristic equation corresponding to eqn (41) is
det|4,;,—iB;| = 0. (42)
As [B] is real, symmetrical and positive, it can be partitioned as
[B] = [L][L]" (43)

where [L] is a non-singular, lower triangular matrix
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[ ]] 3 ]
121 122
L= | . (44)
L lml lm2 e [mm J

Premultiplying eqn (41) by [L] ' and defining {¢} = [L]"{¢}, we have

(Al -2 {e} = {0}. (45)

As [A] = [L] YA]J[L]~T is symmetrical, all the eigenvalues ,, 2, ..., 4,, are real, and
there are m eigenvectors {¢}, {¢?}, ..., {9} corresponding to the m cigenvalues. Any
two of the m eigenvectors are linear independent and orthogonal with respect to matrix
[B], i.e.

{#°}'BI{9"} =5, = {? i: (= 1,2,0..m). (46)

So from eqn (41)

{¢"}TAl{@Y} = 2 {¢}"[B]{¢} = 4,0,

0 it
:{ l#] Gj=12,...,m). @An
Aoi=]

The general solution of the homogeneous equations [eqn (38)] is given in the following
form

(o) = 3 {90} e (48)

where 7, = 1/4,is called the retardation time constant, while {¢"} is sometimes called the
creep mode corresponding to 4;(j = 1,2,...,m).
If we let

[$lm = [{6} {0P}.. . {¢"}] (49)
it follows from eqns (46) and (47) that
(1 (Bl[¢]n = [1] (50)

[$1u[Al[¢]m = [4] (1)

where [4] denotes a diagonal matrix of m x m with 4, being the diagonal elements
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p
S 1

2
[4] = . : (52)

2.2. Solution of nonhomogeneous equations
To obtain the general solution of the nonhomogeneous equations [eqn (35)], let us
introduce so called normalized coordinates

=0 n ... n)" (53)
The strain components can be expressed by {} as
{e} = [$m{n}. (54)
Inserting eqn (54) into eqn (35) allows one to write
[Al[¢]u {n} + [Bl[¢]u (i1} = [C]{s}+[D]{5]. (55)
Premultiplying eqn (55) by [#]% and using eqns (50) and (51) gives
(414w} + M {#} = [Fl{o} +[H]{6} (56)
where
[F] = [¢]u[C]. [H] = [¢]u[D]. (57)

In view of the decoupling between the displacement and velocity terms of the nor-
malized coordinates in eqn (56), we have

Ani+n = Z F,-,a_,-+_zl H,6, (i=12,....,m). (58)
P

J=1

Taking the Laplace transform for eqn (58) and utilizing the initial condition
{n(t =0)} = {6(t = 0)} = {0}, we have

m m F"—H-‘Ai
=Y H,g+ ) (_,L_”’Q&
i=1

P (i=1,2,...,m). (59)
j= i

The inverse transform of eqn (59) gives
ni(t) = Z Hz',aj(t)+ Z (Ej_Hij}'i) J aj(t_é) e e dé (=12,....m). (60)
Jj=1 j=1 0

Substituting eqn (60) into eqn (54), and noting that only the first six components in
a;(j=1,2,...,m) do not vanish, we obtain

feh = 3 (99},

li
I M§

i

{{«b"’} [ S Hya 0+ 3, (F,—H,2) j 51— et dé}}- (61)
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Hence, eqn (61) offers the complete solution of differential equations of eqn (35), which
has a similar form to the solution of eqn (37) given by Biot but is more general because the
solution of eqn (37) can be deduced from eqn (61) by letting [F] = [¢]3; and [H] = [0].

DISCUSSION

As a new model, it is usually necessary to compare its predicted results with those from
the experiments. Fortunately, it is easily found that eqn (61) is equal to the constitutive
relation of a generalized Kelvin—Voigt solid. This model is formed by connecting a spring
and m Kelvin—Voigt elements in series (Fig. 1), and describes the mechanical behaviour of
general viscoelastic materials. The validity of this model has been verified by many exper-
imental results. See, for example, Shames and Cozzarelli (1992), and Aklonis and Mack-
night (1983). This indicates that the predicted results from eqn (61) would be in good
agreement with the experimental results.

The stress—strain relation for uniaxial stress can be easily derived from eqn (61).
Consider the following uniaxial stress state in which

6, =6,(1), 6,=06;="""=04=0. (62)

A substitution of the above equation into eqn (61) gives

i=1

0

& = ca (1) + i dfﬁ"l(!—é)e“"'fdf (63)

where

= Z d7(1i)Hil , 4= (ﬁ(li)(Fil —Hy4). (64)

i=1
For 6,(¢) = a,u (¢) where 6, is a constant and u (¢) is a unit step function, eqn (63) becomes

g = [C*}- i %(1 —e"""):loou(t). (65)

i=1%

The creep compliance function J (¢) is derived as

J(0) = Z—; = |:c+ 5 %(1_e—a,r)]u ). (66)

=17

The same expression for J(£) can also be obtained by using the Boltzmann superposition
principle for the generalized Kelvin-Voigt solid model shown in Fig. 1.

. E, E, E.
0
AM— E— -
L=
111 'flz nm

Fig. 1. Generalized Kelvin—Voigt solid.
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CONCLUSION

Generalized rate-dependent constitutive equations are established based on the theory
of internal state variables in continuum thermodynamics by introducing a dissipation
potential. Both inelastic strain and a set of internal variables are used to characterize
irreversible deformation processes. Viscoelastic constitutive relations are developed as a
particular case when the free energy function and dissipation potential are both taken as
quadratic forms of their independent variables. The constructed relations are the same as
those developed from the general linear viscoelastic model analysis.
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